Bone morphogenetic protein inhibition promotes neurological recovery after intraventricular hemorrhage.
نویسندگان
چکیده
Intraventricular hemorrhage (IVH) results in neural cell death and white matter injury in premature infants. No therapeutic strategy is currently available against this disorder. Bone morphogenetic protein (BMP) signaling suppresses oligodendrocyte development through basic-helix-loop-helix (bHLH) transcription factors and promotes astrocytosis. Therefore, we hypothesized that IVH in premature newborns initiates degeneration and maturation arrest of oligodendrocyte lineage and that BMP inhibition alleviates hypomyelination, gliosis, and motor impairment in the survivors of IVH. To test the hypotheses, a rabbit model of IVH was used in which premature rabbit pups (E29) are treated with intraperitoneal glycerol at 2 h of age to induce IVH; and the pups with IVH exhibit hypomyelination and gliosis at 2 weeks of postnatal age. Maturation of oligodendrocyte lineage was evaluated by specific markers, and the expression of bHLH transcription factors was assessed. BMP levels were measured in both premature rabbit pups and autopsy materials from premature infants. Recombinant human noggin was used to suppress BMP action; and neurobehavioral performance, myelination and gliosis were assessed in noggin-treated pups compared with untreated controls. We found that IVH resulted in apoptosis and reduced proliferation of oligodendrocyte progenitors, as well as arrested maturation of preoligodendrocytes in rabbits. BMP4 levels were significantly elevated in both rabbit pups and human premature infants with IVH compared with controls. Importantly, BMP inhibition by recombinant human noggin restored the levels of phospho-Smad1/5/8, Olig2 transcription factor, oligodendrocyte maturation, myelination, astrocyte morphology, and motor function in premature pups with IVH. Hence, BMP inhibition might enhance neurological recovery in premature infants with IVH.
منابع مشابه
AMPA-Kainate Receptor Inhibition Promotes Neurologic Recovery in Premature Rabbits with Intraventricular Hemorrhage.
UNLABELLED Intraventricular hemorrhage (IVH) in preterm infants leads to cerebral inflammation, reduced myelination of the white matter, and neurological deficits. No therapeutic strategy exists against the IVH-induced white matter injury. AMPA-kainate receptor induced excitotoxicity contributes to oligodendrocyte precursor cell (OPC) damage and hypomyelination in both neonatal and adult models...
متن کاملHyaluronidase and Hyaluronan Oligosaccharides Promote Neurological Recovery After Intraventricular Hemorrhage.
Intraventricular hemorrhage (IVH) in premature infants results in inflammation, arrested oligodendrocyte progenitor cell (OPC) maturation, and reduced myelination of the white matter. Hyaluronan (HA) inhibits OPC maturation and complexes with the heavy chain (HC) of glycoprotein inter-α-inhibitor to form pathological HA (HC-HA complex), which exacerbates inflammation. Therefore, we hypothesized...
متن کاملIntraventricular Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells via Ommaya Reservoir in Persistent Vegetative State Patients after Haemorrhagic Stroke: Report of Two Cases & Review of the Literature
Background: One of the most devastating diseases, stroke, is a leading cause of death and disability worldwide with severe emotional and economic consequences. The purpose of this article is mainly to report the effect of intraventricular transplantation via an Ommaya reservoir using autologous bone marrow mesenchymal stem cells (BM-MSCs) in haemorrhagic stroke patients. Case Presentations: Two...
متن کاملModifying lipid rafts promotes regeneration and functional recovery.
Ideal strategies to ameliorate CNS damage should promote both neuronal survival and axon regeneration. The receptor Neogenin promotes neuronal apoptosis. Its ligand prevents death, but the resulting repulsive guidance molecule a (RGMa)-Neogenin interaction also inhibits axonal growth, countering any prosurvival benefits. Here, we explore strategies to inhibit Neogenin, thus simultaneously enhan...
متن کاملTreatment with thyroxine restores myelination and clinical recovery after intraventricular hemorrhage.
Intraventricular hemorrhage (IVH) remains a major cause of white matter injury in preterm infants with no viable therapeutic strategy to restore myelination. Maturation of oligodendrocytes and myelination is influenced by thyroid hormone (TH) signaling, which is mediated by TH receptor α (TRα) and TRβ. In the brain, cellular levels of TH are regulated by deiodinases, with deiodinase-2 mediating...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 34 شماره
صفحات -
تاریخ انتشار 2011